Drag and lift forces on clean spherical air bubbles in a rotating flow
نویسندگان
چکیده
We study here the motion of a spherical gas bubble in a solid body rotating flow of clean silicon oil, to avoid contamination of interface. From the measurement of its equilibrium position, lift and drag forces are determined. Five different silicon oils have been used, providing five different viscosities and Morton numbers. For spherical bubbles the drag coefficient is at first order the same as the one of clean spherical bubbles in a uniform flow. For clean spherical bubbles, the measured lift coefficient proves to be in good agreement with the expression of Legendre and Magnaudet based on their numerical simulations. We propose however a correlation which improves significantly the prediction of the lift coefficient for small Reynolds numbers. In contrast to the case of contaminated bubbles, we observed no dependence of the lift coefficient on the Rossby number.
منابع مشابه
Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid body rotating flow
A single bubble is placed in a solid body rotating flow of silicon oil. From the measurement of its equilibrium position, lift and drag forces are determined. Five different silicon oils have been used, providing five different viscosities and Morton numbers. Experiments have been performed over a wide range of bubble Reynolds numbers (0.7 ≤ Re ≤ 380), Rossby numbers (0.58 ≤ Ro ≤ 26) and bubble...
متن کاملNumerical Simulation of Air Flow around the NP Car Using the Realizable k-ε Turbulence Model to Predict Aerodynamic Forces and Moments
In this study, a numerical computational fluid dynamics study is conducted in order to predict the aerodynamic forces on the NP car. The turbulent air flow around the car is modeled using the realizable k-ε model. First, results are validated against those presented for the Ahmed’s body. Next, the fluid flow around the car is simulated for different car speeds ( to mph) and fl...
متن کاملComparison of Lift and Drag Forces for Some Conical Bodies in Supersonic Flow Using Perturbation Techniques
Numerical methods are not always convergent especially in higher velocities when shock waves are involved. A comparison analysis is performed to study the supersonic flow over conical bodies of three different cross sections circular, elliptic and squircle (square with rounded corners) shaped using Perturbation techniques to find flow variables analytically. In order to find lift and drag forc...
متن کاملAnalysis of Flow Pattern with Low Reynolds Number around Different Shapes of Bridge Piers, and Determination of Hydrodynamic Forces, using Open Foam Software
In many cases, a set of obstacles, such as bridge piers and abutments, are located in the river waterway. Bridge piers disrupt river’s normal flow, and the created turbulence and disturbance causes diversion of flow lines and creates rotational flow. Geometric shape and position of the piers with respect to flow direction and also number of piers and their spacing are effective on changing the ...
متن کاملNumerical Simulation of Scaling Effect on Bubble Dynamics in a Turbulent Flow around a Hydrofoil
A Lagrangian-Eulerian numerical scheme for the investigation of bubble motion in turbulent flow is developed. The flow is analyzed in the Eulerian reference frame while the bubble motion is simulated in the Lagrangian one. Finite volume scheme is used, and SIMPLEC algorithm is utilized for the pressure and velocity linkage. The Reynolds stresses are modeled by the RSTM model of Launder. Upwind ...
متن کامل